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Abstract. We prove the following results for toric Deligne–Mumford stacks, under minimal
compactness hypotheses: the Localization Theorem in equivariant K-theory; the equivariant
Hirzebruch–Riemann–Roch theorem; the Fourier–Mukai transformation associated to a crepant
toric wall-crossing gives an equivariant derived equivalence.

1. Introduction

We establish various basic geometric properties of toric Deligne–Mumford stacks under min-
imal compactness hypotheses. This is a companion paper to [5]: the results here are used there
in the proof of the Crepant Transformation Conjecture for toric Deligne–Mumford stacks, and
we expect that they will also be useful elsewhere. We establish the equivariant Hirzebruch–
Riemann–Roch theorem and the Localization Theorem in equivariant K-theory, two of the
fundamental tools in equivariant topology, for toric Deligne–Mumford stacks without requiring
compactness. We also give an equivariant generalization of a celebrated result of Kawamata,
that K-equivalent toric Deligne–Mumford stacks are derived equivalent, and exhibit an explicit
Fourier–Mukai kernel that implements this equivalence. This latter result plays an essential role
in the proof of the Crepant Transformation Conjecture [5]: it implies that the transformation
which controls the change in quantum cohomology under a crepant transformation (between
toric Deligne–Mumford stacks or complete intersections therein) is, in an appropriate sense, a
linear symplectic isomorphism. None of the results proved here are surprising, but we were
unable to find proofs of them, at this level of generality, in the literature. Note in particular
that our formulation (equation 2.2 below) of the equivariant Hirzebruch–Riemann–Roch theo-
rem which makes sense for arbitrary (not just toric) smooth Deligne–Mumford stacks with torus
action under mild hypotheses; we believe this formulation to be new.

We consider toric Deligne–Mumford stacks X such that:

(1) the torus-fixed set XT is non-empty; and
(2) the coarse moduli space |X| is semi-projective, i.e. |X| is projective over the affinization

Spec(H0(|X|,O)).

These conditions are equivalent to demanding that X arise as the GIT quotient
[
Cm//ωK

]
of

a vector space by the linear action of a complex torus K, as in §3.1 below. The action of
T = (C×)m on Cm descends to give an ineffective action of T on X, as well as an effective action
of the quotient torus T/K on X.

The Localization Theorem in equivariant K-theory and the equivariant index theorem were
first proved for the topological K-theory of G-spaces and G-manifolds by Atiyah and Segal [1,16].
Similar results were established in algebraic K-theory by Nielsen [15] and Thomason [17–19].
Index theorems have been proven for compact orbifolds by Kawasaki [13] and for proper Deligne–
Mumford stacks by Toen [20]; an equivariant index theorem for compact orbifolds was proved by
Vergne [21]. In §§2–3 we prove an equivariant index theorem for toric Deligne–Mumford stacks,
without requiring properness, using methods and results of Atiyah–Segal and Thomason.

2010 Mathematics Subject Classification. 14A20 (Primary); 19L47, 14F05 (Secondary).
Key words and phrases. Toric Deligne–Mumford stacks, orbifolds, K-theory, localization, derived category of

coherent sheaves, Fourier–Mukai transformation, flop, K-equivalence, equivariant, variation of GIT quotient.

1



2 COATES, IRITANI, JIANG, AND SEGAL

In §5 we prove that the Fourier–Mukai functor associated to the K-equivalence

X̃
f+

~~

f−

  
X+

ϕ // X−

determined by a crepant wall-crossing of toric GIT quotients gives an equivalence between the
equivariant derived categories of X±. This is an equivariant generalization of a result of Kawa-
mata [12], with a different proof: we use the theory developed by Halpern-Leistner [9] and
Ballard–Favero–Katzarkov [2] which relates derived categories to variation of GIT.

Toric Deligne–Mumford stacks were introduced by Borisov–Chen–Smith [4], who described
them in terms of stacky fans. They have also been studied by Jiang [11], who introduced the
notion of an extended stacky fan. Our approach here, where we treat toric Deligne–Mumford
stacks as GIT quotients

[
Cm//ωK

]
, is equivalent to the approach via (extended) stacky fans.

This is explained in [5, §4.2].

2. The Hirzebruch–Riemann–Roch Formula

Let X be a smooth Deligne-Mumford stack with a torus T action, which satisfies the following
properties:

(P1) the coarse moduli space |X| is semi-projective;
(P2) all the T -weights appearing in the T -representation H0(X,O) are contained in a strictly

convex cone in Lie(T )∗, and the T -invariant subspace H0(X,O)T is C.

These properties together imply, for example, that the fixed set XT is compact. As we will
see, these properties allow us to define the equivariant index of coherent sheaves on X, and
to state the equivariant Hirzebruch–Riemann–Roch formula (equation 2.2 below). In §3 below
we prove this Hirzebruch–Riemann–Roch formula for toric Deligne–Mumford stacks, using the
Localization Theorem in equivariant K-theory.

Let |X| denote the coarse moduli space of X and let IX = X ×|X| X denote the inertia
stack of X. The stack IX consists of pairs (x, g) with x ∈ X and g ∈ AutX(x). We write

H••T (IX) :=
∏
pH

2p
T (IX), where the superscript ‘••’ is to indicate that we take the direct

product of cohomology groups rather than the direct sum; it does not indicate a double grading.
Let K0

T (X) denote the Grothendieck group of T -equivariant vector bundles on X. We introduce
an orbifold Chern character map

c̃h: K0
T (X)→ H••T (IX)

as follows. Let IX =
⊔
v∈BXv be the decomposition of the inertia stack IX into connected

components, where the set B indexes the connected components. (If X is a toric Deligne–
Mumford stack then we can take B to be the box of the stacky fan that defines X.) Let
qv : Xv → X be the natural map, and let E be a T -equivariant vector bundle on X. The
stabilizer gv along Xv acts on the vector bundle q∗vE → Xv, giving an eigenbundle decomposition

q∗vE =
⊕
θ∈Θ(v)

Ev,θ

where Θ(v) denotes the set of rational numbers θ ∈ [0, 1) such that exp(2πiθ) is an eigenvalue of
the gv-action on q∗v(E), and Ev,θ is the eigenbundle corresponding to θ. The equivariant Chern
character is defined to be

c̃h(E) =
⊕
v∈B

∑
θ∈Θ(v)

e2πiθ chT (Ev,θ)

where chT (Ev,θ) ∈ H••T (Xv) is the usual T -equivariant Chern character of the T -equivariant
vector bundle Ev,θ → Xv. Let δv,θ,i, 1 ≤ i ≤ rank(Ev,θ) be the T -equivariant Chern roots of

Ev,θ, so that cT (Ev,θ) =
∏
i(1 + δv,θ,i). These Chern roots are not actual cohomology classes,
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but symmetric polynomials in the Chern roots make sense as equivariant cohomology classes on

Xv. The T -equivariant orbifold Todd class T̃d(E) ∈ H••T (IX) is defined to be:

T̃d(E) =
⊕
v∈B

 ∏
θ∈Θ(v)
θ 6=0

rank(Ev,θ)∏
i=1

1

1− e−2πiθe−δv,θ,i

 rankEv,0∏
i=1

δv,0,i

1− e−δv,0,i

We write T̃dX = T̃d(TX) for the orbifold Todd class of the tangent bundle.
Property (P2) gives that all of the T -weights of H0(X,O) lie in a strictly convex cone in

Lie(T )∗. After changing the identification of T with (C×)m if necessary, we may assume that
this cone is contained within the cone spanned by the standard characters λ1, . . . , λm inH2

T (pt) =
Lie(T )∗, where λj : T → C× is given by projection to the jth factor of T = (C×)m. The Chern
character

chT : K0
T (pt)→ Z[e±λ] := Z[e±λ1 , . . . , e±λm ] ⊂ H••T (pt)

sends the irreducible representation of weight λi to eλi . The T -representation H0(X,O) is
infinite dimensional, but each weight piece is finite dimensional. Thus we have a well-defined
character chT (H0(X,O)) in Z[[eλ]] := Z[[eλ1 , . . . , eλm ]]. More generally, if V is a locally finite
T -representation that is finitely generated as an H0(X,O)-module, the character chT (V ) lies
in Z[[eλ]][e−λ] := Z[[eλ]][e−λ1 , . . . , e−λm ]. An important fact is that chT (V ) becomes a rational
function in eλ1 , . . . , eλm for such V , see [19]. In other words, chT (V ) lies in:

Z[[eλ]][e−λ]rat :=

{
f ∈ Z[[eλ]][e−λ] :

f is the Laurent expansion of a rational function
in C(eλ1 , . . . , eλm) at eλ1 = · · · = eλm = 0

}
For a T -equivariant vector bundle E on X, the cohomology groups H i(X,E) are finitely gen-
erated H0(X,O)-modules since |X| is semi-projective. Therefore we can define the equivariant
Euler characteristic χ(E) ∈ Z[[eλ]][e−λ]rat as:

(2.1) χ(E) :=
dimX∑
i=0

(−1)i chT
(
H i(X,E)

)
Let RT = H•T (pt,C), and let ST denote the localization of RT with respect to the set of non-

zero homogeneous elements. We expect that properties (P1) and (P2) are sufficient to imply
the following equivariant Hirzebruch–Riemann–Roch (HRR) formula:

(2.2) χ(E) =

∫
IX

c̃h(E) ∪ T̃dX .

This identity should be interpreted with care. The right-hand side is an equivariant integral

(defined via the localization formula) of an element of H••T (IX), and lies in a completion ŜT of
ST :

ŜT :=

{∑
n∈Z

an : an ∈ SnT , there exists n0 ∈ Z such that an = 0 for all n < n0

}
where SnT denotes the degree n graded component of ST . As we discussed above, the left-hand

side of (2.2) lies in Z[[eλ]][e−λ]rat and is given by a rational function f(eλ1 , . . . , eλm). We take
the Laurent expansion of g(t) = f(etλ1 , . . . , etλm) at t = 0 and obtain an expression g(t) =∑

n≥n0
gnt

n with gn ∈ SnT . The HRR formula (2.2) claims that the element
∑

n≥n0
gn ∈ ŜT thus

obtained is equal to the right-hand side of (2.2). Note that we have the following inclusions of
rings:

Z[[eλ]][e−λ] ⊃ Z[[eλ]][e−λ]rat ↪−→ ŜT .

Non-equivariant versions of the HRR formula (2.2) for orbifolds and Deligne–Mumford stacks
have been established by Kawasaki [13] and Toen [20]. (In the non-equivariant case, X has to
be compact so that both sides of (2.2) are well-defined.) The equivariant index theorem has
been studied by many authors (see e.g. [3,8,14] and references therein) and the formula (2.2) is
known to hold (at least) for compact smooth manifolds [6,8], compact orbifolds [21], and proper
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Deligne–Mumford stacks [7]. We could not, however, find a reference for the formula (2.2) for
non-proper Deligne–Mumford stacks. In §3, we establish (2.2) for toric Deligne–Mumford stacks,
using localization in equivariant K-theory.

Example 2.1. Consider C2 with the diagonal C×-action. The Euler characteristic of the struc-
ture sheaf is:

chC×
(H0(C2,O)) =

∞∑
n=0

(n+ 1)enλ.

On the other hand,∫
C2

TdC×

C2 =

∫
C2

(−λ)2

(1− eλ)2
=

1

(1− eλ)2
=

1

λ2
− 1

λ
+

5

12
− 1

12
λ+

1

240
λ2 + · · · .

The two quantities match. If we consider instead the anti-diagonal C×-action (x, y) 7→ (s−1x, sy)
on C2, the Euler characteristic is ill-defined since each weight subspace is infinite dimensional;
this action does not satisfy our assumptions.

3. Localization in Equivariant K-Theory

In this section we prove the Localization Theorem for the T -equivariant K-theory of toric
Deligne–Mumford stacks, using methods and results of Thomason [17–19]. We then deduce the
T -equivariant Hirzebruch–Rieman–Roch formula (2.2).

3.1. Toric Deligne–Mumford Stacks as GIT Quotients. The definition of toric Deligne-
Mumford stacks is given by [4], and we mainly follow the notations in §4 of [5]. Let K = (C×)r.
Let L = Hom(C×,K) denote the cocharacter lattice of K, so that L∨ = Hom(K,C×) is the
lattice of characters, and fix characters D1, . . . , Dm ∈ L∨. This choice of characters defines a
map from K to the torus T = (C×)m, and hence an action of K on Cm.

Notation 3.1. For a subset I of {1, 2, . . . ,m}, write I for the complement of I, and set:

ConeI =
{∑

i∈I aiDi : ai ∈ R, ai > 0
}
⊂ L∨ ⊗ R

(C×)I × CI =
{

(z1, . . . , zm) : zi 6= 0 for i ∈ I
}
⊂ Cm

We set Cone∅ = {0}.

Definition 3.2. Consider now a stability condition ω ∈ L∨ ⊗ R, and set:

Aω =
{
I ⊂ {1, 2, . . . ,m} : ω ∈ ConeI

}
Uω =

⋃
I∈Aω

(C×)I × CI

Xω =
[
Uω
/
K
]

The square brackets here indicate that Xω is the stack quotient of Uω (which is K-invariant) by
K. We call Xω the toric stack associated to the GIT data (K;L;D1, . . . , Dm;ω). Elements of
Aω are called anticones1.

Example 3.3. Let us give a simple example, purely to demystify all this notation. Set r = 1,
so that K = C× and L∨ = Z. Now set m = 4, and choose D1 = D2 = 1 and D3 = D4 = −1.
This means we are considering a GIT quotient of C4 under a diagonal C× action having weights
(1, 1,−1,−1). We need to choose a stability condition ω in L∨ ⊗R = R, and let us choose ω to
be positive. Then Aω consists of all subsets I ⊂ {1, .., 4} such that either 1 ∈ I or 2 ∈ I. Hence
Uω contains the two open sets:

(C×){1} × C{2,3,4} = {z1 6= 0} and (C×){2} × C{1,3,4} = {z2 6= 0}
In fact these two open sets cover Uω – any other I ∈ Aω corresponds to a subset of at least one
of these two – so Uω is the subset {(z1, z2) 6= (0, 0)} ⊂ C4. Thus Xω is the total space of the
rank 2 vector bundle O(−1)⊕2 over P1.

1This terminology is explained in [5, §4.2].
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Unless otherwise stated, we will consider only GIT data that satisfies:

(3.1)
• {1, 2, . . . ,m} ∈ Aω;
• for each I ∈ Aω, the set {Di : i ∈ I} spans L∨ ⊗ R over R.

The first condition here ensures that Xω is non-empty; the second ensures that Xω is a Deligne–
Mumford stack. These conditions imply that Aω is closed under enlargement of sets, so that if
I ∈ Aω and I ⊂ J then J ∈ Aω.

Fixed points of the T -action on Xω are in one-to-one correspondence with minimal anticones,
that is, with δ ∈ Aω such that |δ| = r. A minimal anticone δ corresponds to the T -fixed point:[

{(z1, . . . , zn) ∈ Uω : zi = 0 if i 6∈ δ}
/
K
]

=
[
(C×)δ

/
K
]

Let Fixω denote the set of minimal anticones for Xω.

3.2. The Localization Theorem. We now state and prove our Localization Theorem.

Theorem 3.4. Let Xω =
[
Uω
/
K
]

be a toric Deligne–Mumford stack as above. Recall that the
torus T acts (ineffectively) on Xω. Given δ ∈ Fixω, write xδ for the corresponding T -fixed point
of Xω, so that xδ ∼= BGδ where Gδ is the isotropy subgroup of xδ. Let iδ : xδ → Xω denote
the inclusion and let Nδ denote the normal bundle to iδ. Let Z[T ] = K0

T (pt) denote the ring
of regular functions (over Z) on T and let FracZ[T ] denote the field of fractions. Then for
α ∈ K0

T (Xω), we have:

α =
∑

δ∈Fixω

(iδ)?

(
i?δα

λ−1N∨δ

)
in K0

T (Xω)⊗Z[T ] Frac(Z[T ])

where λ−1N
∨
δ :=

∑dimXω
i=0 (−1)i

∧iN∨δ is invertible in K0
T (xδ)⊗Z[T ] Frac(Z[T ]).

Proof. We have that K0
T (Xω) = K0

T×K(Uω), where the action of (t, k) ∈ T × K on Uω is

given by the action of tk−1 ∈ T on Uω. As a module over over K0
T×K(pt) = Z[T × K],

K0
T×K(Uω) is supported2 on the set of points (t, k) ∈ T ×K such that (t, k) has a fixed point in

Uω [19, Théorème 2.1]. Therefore the support of K0
T×K(Uω) is the union

⋃
δ∈Fixω

Tδ of subtori
Tδ defined by

(3.2) Tδ = {(t, k) ∈ T ×K : πδ(t) = πδ(k)}.
Here πδ : T = (C×)m → (C×)δ is the natural projection. Note that Tδ fixes the locus (C×)δ ⊂ Uω
corresponding to the fixed point xδ. The torus Tδ is connected and the natural projection Tδ → T
is a finite covering with Galois group Gδ. Therefore the localization K0

T×K(Uω)⊗Z[T ] Frac(Z[T ])
is supported on finitely many points, which are the generic points ξδ of Tδ. On the other hand,
the stalk of K0

T×K(Uω) at ξδ is given by the isomorphism [19, Théorème 2.1]:

(3.3) (iδ)? : K0
T×K((C×)δ)ξδ

∼=−→ K0
T×K(Uω)ξδ

The localization K0
T×K(Uω) ⊗Z[T ] Frac(Z[T ]) is the direct sum of these stalks. For the same

reason, we have:

K0
T (xδ)⊗Z[T ] Frac(Z[T ]) = K0

T×K((C×)δ))⊗Z[T ] Frac(Z[T ]) = K0
T×K((C×)δ)ξδ

The inverse to (3.3) is given by (λ−1N
∨
δ )−1 · i?δ(−) by [19, Lemma 3.3]. The conclusion follows.

We remark that λ−1N
∨
δ is invertible in K0

T×K((C×)δ)ξδ by [19, Lemma 3.2]. �

Corollary 3.5. Let the notation be as in Theorem 3.4. For α ∈ K0
T (Xω), we have

χ(α) =
∑

δ∈Fixω

χ

(
i?δα

λ−1N∨δ

)
where χ(−) denotes the T -equivariant Euler characteristic given in (2.1).

2The equivariant K-group K0
T×K(Uω) is a module over K0

T×K(pt) = Z[T ×K], and hence defines a sheaf on

SpecZ[T ×K]. The support of K0
T×K(Uω) means the support of this sheaf.
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Proof. The discussion in §2 shows that χ defines a Z[T ]-linear map

K0
T (Xω)→ Frac(Z[T ])

which, by extension of scalars, gives K0
T (Xω) ⊗Z[T ] Frac(Z[T ]) → Frac(Z[T ]). Corollary 3.5 is

thus an immediate consequence of Theorem 3.4. �

Corollary 3.6. The T -equivariant Hirzebruch–Riemann–Roch formula (2.2) holds when X is
a toric Deligne–Mumford stack with semi-projective coarse moduli space and the torus-fixed set
XT is non-empty.

Proof. We compute the right-hand side of the HRR formula (2.2) using localization in equivariant
cohomology, and match it with the fixed point formula in Corollary 3.5. Recall the (T×K)-action
in the proof of Theorem 3.4. It suffices to show that

χ

(
V

λ−1Nδ

)
=

1

|Gδ|
∑
g∈Gδ

c̃h(V )gT̃d(Nδ)g
eT (Nδ,g)

for a (T ×K)-representation V . Here we regard V as a (T ×K)-equivariant vector bundle on
(C×)δ, which is the same thing as a T -equivariant vector bundle on xδ = [(C×)δ/K]. The index

g ∈ Gδ parametrizes connected components of IBGδ, c̃h(·)g and T̃d(·)g denote the components
of the T -equivariant orbifold Chern character and T -equivariant orbifold Todd class along the
component of IBGδ indexed by g, and Nδ,g is the g-fixed subbundle of Nδ.

Consider the subgroup Tδ of T ×K in (3.2). This is the stabilizer of the (T ×K)-action on
(C×)δ and fits into the exact sequence:

1 // Gδ // Tδ // T // 1

A (T × K)-representation W can be viewed as a Tδ-representation and the Gδ-invariant part
WGδ gives a T -representation. The Euler characteristic of W , as a T -equivariant vector bundle
on xδ, is then given by the T -character of WGδ :

χ(W ) = chT (WGδ) =
1

|Gδ|
∑
g∈Gδ

Tr(geλ : W )

where λ ∈ Lie(T ) and geλ gives an element of Tδ. On the other hand, we have

Tr(geλ : V ) = c̃h(V )g

Tr(geλ : λ−1N
∨
δ ) =

eT (Nδ,g)

T̃d(Nδ)g

by the definition of c̃h and T̃d in §2. The conclusion follows from the fact that Tr(geλ : −)
preserves the product. �

4. Birational Transformations from Variation of GIT

In this section we consider crepant birational transformations ϕ : X+ 99K X− between toric
Deligne–Mumford stacks which arise from a variation of GIT quotient. We construct a K-
equivalence:

(4.1)

X̃
f+

~~

f−

  
X+

ϕ // X−

canonically associated to ϕ, and show that this too arises from a variation of GIT quotient.

Recall that our GIT data in §3.1 consist of a torus K ∼= (C×)r, the lattice L = Hom(C×,K) of
C×-subgroups of K, and characters D1, . . . , Dm ∈ L∨. A choice of stability condition ω ∈ L∨⊗R
satisfying (3.1) determines a toric Deligne–Mumford stack Xω =

[
Uω/K

]
. The space L∨ ⊗ R

of stability conditions is divided into chambers by the closures of the sets ConeI , |I| = r − 1,
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and the Deligne–Mumford stack Xω depends on ω only via the chamber containing ω. For any
stability condition ω satisfying (3.1), the set Uω contains the big torus T = (C×)m, and thus
for any two such stability conditions ω1, ω2 there is a canonical birational map Xω1 99K Xω2 ,
induced by the identity transformation between T/K ⊂ Xω1 and T/K ⊂ Xω2 .

Consider now a birational transformation X+ 99K X− arising from a single wall-crossing in the
space of stability conditions, as follows. Let C+, C− be chambers in L∨ ⊗ R that are separated
by a hyperplane wall W , so that W ∩ C+ is a facet of C+, W ∩ C− is a facet of C−, and
W ∩ C+ = W ∩ C−. Choose stability conditions ω+ ∈ C+, ω− ∈ C− satisfying (3.1) and set
U+ := Uω+ , U− := Uω− , X+ := Xω+ , X− := Xω− , and:

A± := Aω± =
{
I ⊂ {1, 2, . . . ,m} : ω± ∈ ConeI

}
Then C± =

⋂
I∈A±

ConeI . Let ϕ : X+ 99K X− be the birational transformation induced by the

toric wall-crossing from C+ to C− and suppose that
∑m

i=1Di ∈ W : as we will see below this

amounts to requiring that ϕ is crepant. Let e ∈ L denote the primitive lattice vector in W⊥

such that e is positive on C+ and negative on C−.

Example 4.1. Recall our Example 3.3 where we quotiented C4 by C× with weights (1, 1,−1,−1).
Here there are exactly two chambers in L∨ ⊗R = R, namely C+ = R+ and C− = R−, and they
are separated by the wall W = {0}. Note that

∑
Di = 0 which does indeed lie in W , and that

e just the vector 1 ∈ R.
Previously we chose a postive ω so we constructed X+; if we now choose an ω− ∈ C− then

we get that U− = {(z3, z4) 6= (0, 0)} ⊂ C4, and X− is again the total space of O(−1)⊕2 over (a
different) P1. The birational map ϕ : X+ 99K X− is the Atiyah flop.

Choose ω0 from the relative interior of W ∩ C+ = W ∩ C−. The stability condition ω0 does
not satisfy our assumption (3.1) on GIT data, but we can still consider

A0 := Aω0 = {I ⊂ {1, . . . ,m} : ω0 ∈ ConeI}
and the corresponding toric Artin stack X0 := Xω0 = [Uω0/K] as given in Definition 3.2. Here X0

is not Deligne–Mumford, as the C×-subgroup of K corresponding to e ∈ L (the defining equation
of the wall W ) has a fixed point in U0 := Uω0 . The stack X0 contains both X+ and X− as open
substacks and the canonical line bundles of X+ and X− are the restrictions of the same line
bundle L0 → X0 given by the character −

∑m
i=1Di of K. The condition

∑m
i=1Di ∈ W ensures

that L0 comes from a Q-Cartier divisor on the underlying singular toric variety X0 = Cm//ω0K.
There are canonical blow-down maps g± : X± → X0, and KX± = g?±L0. The maps g± will
combine with diagram (4.1) to give a commutative diagram:

X̃
f−

!!

f+

}}
X+

g+ !!

ϕ // X−

g−}}
X0

This shows that f?+(KX+) and f?−(KX−) coincide, since they are the pull-backs of the same

Q-Cartier divisor on X0. The equality f?+(KX+) = f?−(KX−) is what is meant by the birational
map ϕ being crepant, and by the diagram (4.1) being a K-equivalence.

Example 4.2. Let us continue with our Example 4.1. The stability condition ω0 can only be
0 ∈ R. This means that the empty set ∅ is an element of A0 (since Cone∅ = {0} by definition),
hence U0 is the whole of C4 and X0 is the Artin stack [C4/C×]. The underlying singular variety
X0 is the 3-fold ordinary double point.
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It remains to construct diagram (4.1). Consider the action of K × C× on Cm+1 defined by

the characters D̃1, . . . , D̃m+1 of K × C×, where:

D̃j =


Dj ⊕ 0 if j < m+ 1 and Dj · e ≤ 0

Dj ⊕ (−Dj · e) if j < m+ 1 and Dj · e > 0

0⊕ 1 if j = m+ 1

Consider the chambers C̃+, C̃−, and C̃ in (L⊕ Z)∨ ⊗ R that contain, respectively, the stability
conditions

ω̃+ = (ω+, 1) ω̃− = (ω−, 1) and ω̃ = (ω0,−ε)

where ε is a very small positive real number. Let X̃ denote the toric Deligne–Mumford stack
defined by the stability condition ω̃. Lemma 6.16 in [5] gives that:

(1) The toric Deligne–Mumford stack corresponding to the chamber C̃+ is X+.

(2) The toric Deligne–Mumford stack corresponding to the chamber C̃− is X−.
(3) There is a commutative diagram as in (4.1), where:

• f+ : X̃ → X+ is a toric blow-up, arising from the wall-crossing from C̃ to C̃+; and

• f− : X̃ → X− is a toric blow-up, arising from the wall-crossing from C̃ to C̃−.

Example 4.3. Let us spell out this construction for the Atiyah flop (that is, we continue our
Example 4.2). We consider an action of (C×)2 on C5 with weight matrix(

1 1 −1 −1 0
−1 −1 0 0 1

)
(The columns of this matrix are the characters D̃1, ..., D̃5.) The space of stability conditions
R2 = {(s1, s2)} is partitioned into three chambers:

C̃+ = {s1 > 0, s1+s2 > 0}, C̃− = {s1 < 0, s2 > 0}, and C̃ = {s1+s2 < 0, s2 < 0}

The walls are the rays spanned by the characters D̃i.

If we choose a stability condition ω lying in C̃+ or C̃− (such as ω = ω̃+ or ω = ω̃−) then any
anticone I ∈ Aω has to have 5 ∈ I; consequently the semi-stable locus Uω is contained in the
open set {z5 6= 0} ⊂ C5. However, the stack [{z5 6= 0}/(C×)2] is canonically equivalent to the
stack X0 = [C4/C×], so for these stability conditions the GIT problem reduces to the previous

one. This is why stability conditions in C̃+ produce X+, and stability conditions in C̃− produce
X−.

Now consider the stability condition ω̃ from the chamber C̃. The anticones I ∈ Aω̃ are the
subsets of {1, ..., 5} such that I ∩ {1, 2} 6= ∅ and I ∩ {3, 4} 6= ∅. Consequently the semi-stable
locus for ω̃ is the open set:

Uω̃ = {(z1, z2) 6= (0, 0), (z3, z4) 6= (0, 0)} ⊂ C5

Then X̃ is the total space of the line-bundle O(−1,−1) over P1 × P1. This is the common
blow-up of X+ and X−.

5. The Fourier–Mukai Functor is a Derived Equivalence

Let ϕ : X+ 99K X− be a crepant birational transformation between toric Deligne–Mumford
stacks which arises from a toric wall-crossing, and let:

(5.1)

X̃
f+

~~

f−

  
X+

ϕ // X−

be the K-equivalence constructed in §4. Recall that X+ =
[
Uω+/K

]
, X− =

[
Uω−/K

]
where Uω±

are open subsets of Cm and K ⊂ T is a subtorus of the big torus T = (C×)m. Set Q = T/K, so
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that X+ and X− carry effective actions of Q. The maps f± in (5.1) are Q-equivariant. In this
section we show that the Fourier–Mukai functor:

FM : Db
Q(X−)→ Db

Q(X+) FM := (f+)?(f−)?

is an equivalence of categories. This generalizes a theorem due to Kawamata [12, Theorem 4.2],
by considering the Q-equivariant, rather than the non-equivariant, derived category.

To prove that the Fourier–Mukai transform gives an equivarant derived equivalence, we will
use the theory developed by Halpern-Leistner [9] and Ballard–Favero–Katzarkov [2] which relates
derived categories to variation of GIT. Note that the Q-equivariant derived category of X± is
just the derived category of the stack

[
X±/Q

]
=
[
Uω±/T

]
, and that

[
U±/T

]
both sit as open

substacks of
[
Cm/T

]
. The work of Halpern-Leistner and Ballard–Favero–Katzarkov allows us

to find a (non-unique) subcategory:

G ⊂ Db
T (Cm)

which is equivalent, under the restriction functors, to both Db
Q(X−) and Db

Q(X+). By inverting
the first equivalence we get an equivalence:

GR : Db
Q(X−)

∼−→ Db
Q(X+)

The notation GR here refers to the ‘grade-restriction rules’ which define the subcategory G. We
will show that GR and FM are the same functor, hence proving that the FM is an equivalence.

Remark 5.1. The result that GR = FM is stated in [10, §3.1], and a sketch proof is given. We
did not find the sketch entirely satisfactory, and so give a complete proof here. (Also Halpern-
Leistner–Shipman treat only the non-equivariant case, but this is a minor point.)

5.1. Grade-Restriction Rules. The theory we need was developed by Halpern-Leistner [9]
and Ballard–Favero–Katzarkov [2] independently; we will quote the former. We consider only
smooth spaces acted on by tori, this simplifies the theory considerably. Let M be a smooth
variety carrying an action of a torusG. A Kempf–Ness stratum (henceforth KN-stratum) consists
of the following data:

• A 1-parameter subgroup λ ⊂ G.
• A connected component Z of the fixed locus Mλ. We let iZ : Z ↪→ M denote the

inclusion.
• The associated blade:

S =
{
y ∈M ; lim

t→∞
λ(t)(y) ∈ Z

}
We require that S is closed in M .

Both Z and S are automatically smooth, and a theorem of Bia lynicki–Birula implies that S is
a locally trivial bundle of affine spaces over Z. The fixed component Z is automatically closed
in M , but S need not be; thus the requirement that S be closed in M is non-trivial. To a
KN-stratum we associate the numerical invariant:

η := weightλ
(
det(NS/M )|Z

)
From the definition of S we have that η is a non-negative integer. Now pick any integer k, and
define the subcategory

Gk ⊂ Db
G(M)

to be the full subcategory consisting of objects E that obey the following grade-restriction rule:

(5.2) the homology sheaves of Ri?ZE have λ weights lying in the interval [k, k + η).

The main result of [9], Theorem 3.35 there, is that for any k the restriction functor gives an
equivalence:

Gk
∼ // Db

G(M \ S)

A KN-stratification is a sequence (λ0, Z0, S0), ..., (λn, Zn, Sn) such that each triple (λi, Zi, Si) is
a KN-stratum in the space M \

⋃
j<i Sj . If we pick an integer ki for each stratum then we can

define a subcategory:
Gk• ⊂ Db

G(M)
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by imposing a grade-restriction rule on each locally closed subvariety Zi ⊂ M . By recursively
applying the previous result we have [9, Theorem 2.10] that Gk• is equivalent to the derived
category of: [(

M \
⋃
i

S
)/
G
]

If M is semi-projective and M ss is the semi-stable locus for some stability condition, then Kempf
and Ness showed that we can construct a KN-stratification with M \

⋃
i Si = M ss. Thus the

subcategory Gk• provides a way to lift the derived category of the GIT quotient
[
M ss/G] into

the derived category of the ambient Artin stack
[
M/G

]
.

Next we explain how to apply this theory to find the derived equivalence

GR : Db
Q(X−)

∼ // Db
Q(X+)

following [9, §4.1]. In §4 above we introduced open subsets of Cm

U+ = Cm \

 ⋃
I 6∈A+

CI
 U0 = Cm \

 ⋃
I 6∈A0

CI
 U− = Cm \

 ⋃
I 6∈A−

CI


with X+ =
[
U+/K

]
and X− =

[
U−/K

]
. The set U0 is the semi-stable locus for a stability

condition ω0 that lies on the wall W between X+ and X−. Recall that e is a primitive normal
vector to W ; this defines a 1-parameter subgroup of K which ‘controls the wall-crossing’. Set:

M± = {i ∈ {1, . . . ,m} : ±Di · e > 0} M≥0 = M0 tM+

M0 = {i ∈ {1, . . . ,m} : Di · e = 0} M≤0 = M0 tM−
Our assumptions imply that both M+ and M− are non-empty. The fixed-point locus, attracting
subvariety, and repelling subvariety for e are CM0 , CM≤0 , and CM≥0 respectively. It is clear3

that U± ⊂ U0 and that:

U+ = U0 \
(
CM≤0 ∩ U0

)
U− = U0 \

(
CM≥0 ∩ U0

)
Set:

Z = U0 ∩ CM0 S+ = U0 ∩ CM≥0 S− = U0 ∩ CM≤0

Both (e, Z, S−) and (−e, Z, S+) define KN-strata inside U0. The numerical invariants associated
to these two strata are

η+ =
∑
i∈M+

Di · e and η− = −
∑
i∈M−

Di · e

respectively. The crepancy condition gives η+ = η−. Now define a full subcategory G ⊂ Db
T (U0)

consisting of objects E such that the e weights of the homology sheaves of Ri?ZE lie in the interval
[0, η+); this is the grade-restriction rule (5.2). Then G is equivalent, under the restriction functor,
to:

Db
T (U0 \ S−) = Db

Q(X+)

However, this grade restriction rule is the same thing as requiring the (−e) weights of the
homology of Ri?ZE to lie in the interval [−η−+1, 1), so G is also equivalent to:

Db
T (U0 \ S+) = Db

Q(X−)

After inverting the latter equivalence we obtain the required equivalence GR.
If we wish, we can pick a KN-stratification for the complement of U0 in Cm and use grade-

restriction rules to lift Db
T (U0) into Db

T (Cm), thus lifting G to a category defined on the larger
stack. This produces the same equivalence GR.

3See e.g. [5, Lemma 5.2].
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5.2. Derived Categories of Blow-Ups and Variation of GIT. Given a blow-up f : X̃ → X,
there are adjoint functors

f? : Db(X)→ Db(X̃) f? : Db(X̃)→ Db(X).

In this section we construct these functors using grade-restriction rules and variation of GIT, in
a quite general setting.

Suppose that X is a Deligne–Mumford stack, E is a vector bundle on X, and that Z ⊂ X is

a connected substack defined by the vanishing of a regular section σ of E. Let X̃ := BlZ X be
the blow-up of X with center Z. Consider the total space of the bundle E ⊕OX , and equip it
with a C× action having weights (1,−1). Now consider the C×-invariant subspace:

M = {(v, z) : v ∈ Ex, z ∈ C such that zv = σ(x)} ⊂ E ⊕OX
The stack

[
M
/
C×
]

contains both X and X̃ as open substacks, and sits in a diagram:

E

&&

OP(E)(−1)

ww

BlX E

[
E ⊕OX

/
C×
]

X Γ(σ)

OO

&&

X̃

OO

ww

BlZ X

[
M
/
C×
]

OO

where all arrows are inclusions and Γ(σ) denotes the graph of σ. The fixed locus MC×
is

isomorphic to Z, the attracting subvariety S− is isomorphic to the total space of OX
∣∣
Z

, and the

repelling subvariety S+ is isomorphic to the total space of E
∣∣
Z

. Let U± = M \S∓; these are the
semi-stable loci for the two possible stability conditions. We have a commuting diagram:

(5.3)

[
M
/
C×
]

π

��

X
[
U+

/
C×
]+ �
i+

99

[
U−
/
C×
]3 S

i−
ee

xx

X̃

fqqX

where i± are the inclusions and π is induced by the vector bundle projection map E⊕OX → X.

Thus the blow-up f : X̃ → X arises from variation of GIT, and it does so relative to X.
We now apply the results discussed in the previous section. Let iZ : Z → M denote the

inclusion. For each stability condition we have a single KN-stratum, namely (C×, Z, S±). The
numerical invariants are:

η = −weight(OX |Z) = 1 and η̃ = weight(detE|Z) = rankE.

Hence we define full subcategories:

H ⊂ H̃ ⊂ Db
C×(M)

using the grade-restriction rule (5.2), where for H we require the weights to lie in the interval

[0, 1) and for H̃ we require the weights to lie in [0, rankE). Then H and H̃ are equivalent, via

the restrictions i+ and i−, to the derived categories of X and X̃ respectively.

Lemma 5.2.
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(1) The composition:

Db(X)
(i?+)−1

// H
i?− // Db(X̃)

is equal to the pull-up functor f?.
(2) The composition

Db(X̃)
(i?−)−1

// H̃
i?+ // Db(X)

is equal to the push-down functor f?.

Proof. (1) We use the diagram (5.3). If F is any sheaf on X, then π?F
∣∣
Z

is of C×-weight zero,
and so π?F ∈ H. Moreover, since i?+π

? is the identity functor, we must have that π? is an
embedding and

π?(Db(X)) = H

with π? = (i?+)−1. Now the statement follows, since i?−π
? = f?.

(2) Let E ∈ H and F ∈ H̃. By [9, Theorem 3.29], restriction gives a quasi-isomorphism

RHom[M/C×](E ,F)
∼−→ RHomX(i?+E , i?+F)

In other words, the composition:

H̃
i?+ // Db(X)

(i?+)−1

// H

is the right adjoint to the inclusion H ↪→ H̃. If we identify H and H̃ with Db(X) and Db(X̃)

using i?+ and i?− respectively, then the inclusion H ↪→ H̃ is identified with f? by (1), and so its
right adjoint must coincide with f?. �

5.3. The Fourier-Mukai Functor and Variation of GIT. In this section we complete the
proof that the Fourier–Mukai functor FM arising from the diagram (5.1) is a derived equivalence,
by showing that it coincides with the ‘grade-restriction’ derived equivalance GR.

5.3.1. Variation of GIT Setup. We saw in §4 that X+, X− and X̃ can be constructed using a
single GIT problem. These quotients correspond respectively to chambers which we denoted

C̃+, C̃− and C̃. Let W+|−, W+|∼ and W−|∼ denote the codimension-1 walls between these three
chambers, and let W0 be the codimension-2 wall where all three meet. The three codimension-1
walls each define one-parameter subgroups of K × C×, which have fixed loci, repelling subvari-
eties, and attracting subvarieties as follows.

Wall: W+|− W−|∼ W+|∼

One-parameter subgroup: (e, 0) (0, 1) (e, 1)

Fixed locus: CM0 × C CM≤0 CM≥0

Repelling subvariety: CM≥0 × C CM≤0 × C CM≥0 × C

Attracting subvariety: CM≤0 × C Cm Cm

Consider 7 stability conditions as follows: one lying on (the relative interior of) W0, one lying
on (the relative interior of) each of the 3 codimension-1 walls, and one lying in each chamber.
The semi-stable locus V0 ⊂ Cm+1 for a stability condition lying on W0 is the open set:

V0 = U0 × C = Cm+1 \

 ⋃
I /∈A0

CI × C


where U0 was defined in Section 5.1. The semi-stable locus for the other 6 stability conditions
are open subsets of V0, as follows:
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Location of stability condition Semi-stable locus

C̃+ V+ = V0 \
(
(CM≤0 × C) ∪ Cm

)
C̃− V− = V0 \

(
(CM≥0 × C) ∪ Cm

)
C̃ V∼ = V0 \

(
(CM≤0 × C) ∪ (CM≥0 × C)

)
W+|− V+|− = V0 \ Cm
W+|∼ V+|∼ = V0 \ (CM≤0 × C)
W−|∼ V−|∼ = V0 \ (CM≥0 × C)

The GIT quotients
[
V+/K

]
,
[
V−/K

]
, and

[
V∼/K

]
are X+, X−, and X̃ respectively.

Let ki = max(Di · e, 0). The maps:

π̄− : Cm+1 → Cm K × C× → K

(x1, . . . , xm+1) 7→
(
x1x

k1
m+1, . . . , xmx

km
m+1

)
(θ, θ′) 7→ θ

induce a morphism π− :
[
Cm+1/(T × C×)

]
→
[
Cm/T

]
. This morphism maps the subset V0 to

the subset U0, and it maps the subset V−|∼ to the subset U−. Thus we have a commutative
diagram: [

V−|∼/(T × C×)
]

π−

��

[
X−/Q

] [
V−/(T × C×)

]( �
66

[
V∼/(T × C×)

]6 V

hh

vv

[
X̃/Q

]
f−qq[

X−/Q
]

where f− is the (Q-equivariant) blow-up. Similiarly there is a map π+ which sends V+|∼ to

U+ and gives a corresponding commutative diagram for f+. The stack
[
V+|−/(T × C×)

]
is

isomorphic to
[
U0/T

]
, via either of π− or π+.

5.3.2. Proof that FM Coincides With GR. As discussed, the fact that FM is an equivalence
follows from:

Proposition 5.3. The two functors

FM : Db
Q(X−) −→ Db

Q(X+) and GR : Db
Q(X−) −→ Db

Q(X+)

are naturally isomorphic.

Proof. Consider the following poset of inclusions:

(5.4)

V0

V−|∼

==

V+|∼

bb

V−

==

V∼

aa ==

V+

aa

Passing to (equivariant) derived categories, we get a corresponding commuting diagram of re-
striction functors. We will prove our proposition by lifting the categories along the bottom line
up the diagram, using grade-restriction rules.

Let us denote by d the positive integer:

d =
∑
i∈M+

Di · e = −
∑
i∈M−

Di · e
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We begin by considering V+ and V∼ as open subsets of V+|∼. They are the complements,
respectively, of the KN stratum:(

(e, 1), CM≥0 ∩ V+|∼, Cm ∩ V+|∼

)
which has numerical invariant η = 1, and the KN stratum:(

(−e,−1), CM≥0 ∩ V+|∼, (CM≥0 × C) ∩ V+|∼

)
which has numerical invariant η = d. Hence we define subcategories

F ⊂ F̃ ⊂ Db
T×C×

(
V+|∼

)
by imposing the grade-restriction rule (5.2) on the subvariety CM≥0 ∩ V+|∼, where for F we

require that the (e, 1)-weights lie in the interval [0, 1), and for F̃ we require that the (e, 1)-

weights lie in the interval [0, d). Then F is equivalent under restriction to Db
Q(X+), and F̃ is

equivalent under restriction to Db
Q(X̃). Using the map π+, and arguing exactly as in Lemma

5.2, we have a commuting triangle

F̃

'

|| ""
Db
Q(X̃)

(f+)? // Db
Q(X+)

where the diagonal maps are the restriction functors.
Now view V− as an open subset of V−|∼, where it is the complement of the KN-stratum:(

(0, 1), CM≤0 ∩ V−|∼, Cm ∩ V−|∼
)

which has numerical invariant η = 1. Hence we define a subcategory

H ⊂ Db
T×C×

(
V−|∼

)
using the grade restriction rule on the subvariety CM≤0 ∩ V−|∼ and requiring the (0, 1)-weights

to lie in the interval [0, 1). Then H is equivalent under restriction to Db
Q(X−) (there is also a

larger subcategory H̃ which is equivalent to Db
Q(X̃), but we will not need this). Using the map

π− and the proof of Lemma 5.2 again, we have commuting triangle

H

'

{{ ""
Db
Q(X−)

(f−)? // Db
Q(X̃)

where the diagonal maps are the restriction functors.
Next we recall the definition of the functor GR from Section 5.1. It is constructed by lift-

ing Db
Q(X−) to a subcategory G ⊂ Db

T (U0) and then restricting to
[
X+/Q

]
. Consider the

subcategory:
(π−)?G ⊂ Db

T×C×(V0)

Since we have a commuting diagram[
V−/(T × C×)

] � � //
[
V+|−/(T × C×)

] � � //
[
V0/(T × C×)

]
π−

��[
X−/Q

] [
U−/T

] � � //
[
U0/T

]
the subcategory (π−)?G must be equivalent to Db

Q(X−) under restriction, and therefore we can

also obtain the functor GR by inverting this equivalence and then restricting to Db
Q(X+).
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Now take an object E ∈ (π−)?G. From the definition of G, and the fact that

CM≥0 ⊂ (π−)−1
(
CM0

)
it follows that the homology sheaves of the restriction of E to CM≥0 ∩V0 have (e, 1)-weights lying
in the interval [0, d). Consequently, the restriction functor from V0 to the open subset V+|∼

maps the subcategory (π−)?G into the subcategory F̃.
Also, the homology sheaves of the restriction of E to CM≤0 ∩ V0 have (0, 1)-weight zero, since

this is true of any object in the image of (π−)?. Consequently the restriction functor from V0

to V−|∼ maps (π−)?G into H. This must in fact be an equivalence, since both categories are

equivalent to Db
Q(X−) under restriction to V−.

Putting all of the above together, we have a commutative diagram

(π−)?G

'

{{ ""
H

'

{{ ""

F̃

'

|| ""
Db
Q(X−)

(f−)∗ // Db
Q(X̃)

(f+)? // Db
Q(X+)

in which all the downward arrows are restriction functors (c.f. the diagram (5.4)). We conclude
that the functor GR agrees with the composition (f+)?(f−)?, which is the statement of the
Proposition. �
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